Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72.241
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7762, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565529

RESUMO

Groundwater is an excellent alternative to freshwater for drinking, irrigation, and developing arid regions. Agricultural, commercial, industrial, residential, and municipal activities may affect groundwater quantity and quality. Therefore, we aimed to use advanced methods/techniques to monitor the piezometric levels and collect groundwater samples to test their physicochemical and biological characteristics. Our results using software programs showed two main types of groundwater: the most prevalent was the Na-Cl type, which accounts for 94% of the groundwater samples, whereas the Mg-Cl type was found in 6% of samples only. In general, the hydraulic gradient values, ranging from medium to low, could be attributed to the slow movement of groundwater. Salinity distribution in groundwater maps varied between 238 and 1350 mg L-1. Although lower salinity values were observed in northwestern wells, higher values were recorded in southern ones. The collected seventeen water samples exhibited brackish characteristics and were subjected to microbial growth monitoring. Sample WD12 had the lowest total bacterial count (TBC) of 4.8 ± 0.9 colony forming unit (CFU mg L-1), while WD14 had the highest TBC (7.5 ± 0.5 CFU mg L-1). None of the tested water samples, however, contained pathogenic microorganisms. In conclusion, the current simulation models for groundwater drawdown of the Quaternary aquifer system predict a considerable drawdown of water levels over the next 10, 20, and 30 years with the continuous development of the region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Água Subterrânea/química , Poços de Água , Água , Qualidade da Água , Poluentes Químicos da Água/análise
2.
Environ Monit Assess ; 196(5): 461, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642157

RESUMO

Heavy metal pollution is an enduring environmental challenge that calls for sustainable and eco-friendly solutions. One promising approach is to harness discarded plant biomass as a highly efficient environmental friendly adsorbents. In this context, a noteworthy study has spotlighted the employment of Euryale ferox Salisbury seed coat (E.feroxSC) for the exclusion of trivalent and hexavalent chromium ions. This study aims to transform discarded plant residue into a novel, environmentally friendly, and cost-effective alternative adsorbent, offering a compelling alternative to more expensive adsorption methods. By repurposing natural materials, we can contribute to mitigating heavy-metal pollution while promoting sustainable and economically viable solutions in environmental remediation. The effect of different parameters, i.e., chromium ions' initial concentration (5-25 mg L-1), solution pH (2-7), adsorbent dosage (0.2-2.4 g L-1), contact time (20-240 min), and temperature (298-313 K), were investigated. E.feroxSC proved highly effective, achieving 96.5% removal of Cr(III) ions at pH 6 and 97.7% removal of Cr(VI) ions at pH 2, with a maximum biosorption capacity of 18.33 mg/g for Cr(III) and 13.64 mg/g for Cr(VI), making it a promising, eco-friendly adsorbent for tackling heavy-metal pollution. The adsorption process followed the pseudo-second-order kinetic model, aligning well with the Langmuir isotherm, exhibited favorable thermodynamics, and was characterized as feasible, spontaneous, and endothermic with physisorption mechanisms. The investigation revealed that E.feroxSC effectively adsorbed Cr(VI) which could be rejuvenated in a basic solution with minimal depletion in its adsorption capacity. Conversely, E.feroxSC's adsorption of Cr(III) demanded rejuvenation in an acidic milieu, exhibiting comparatively less efficient restoration.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Monitoramento Ambiental , Cromo/análise , Água , Termodinâmica , Cinética , Adsorção
3.
J Environ Manage ; 357: 120732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560954

RESUMO

Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Esgotos/análise , Eliminação de Resíduos Líquidos , Estações do Ano , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Antibacterianos/análise , Medição de Risco , Macrolídeos/análise , Preparações Farmacêuticas
4.
Waste Manag ; 180: 125-134, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564913

RESUMO

Composting municipal food waste is a key strategy for beneficially reusing methane-producing waste that would otherwise occupy landfill space. However, land-applied compost can cycle per- and polyfluoroalkyl substances (PFAS) back into the food supply and the environment. We partnered with a pilot-scale windrow composting facility to investigate the sources and fate of 40 PFAS in food waste compost. A comparison of feedstock materials yielded concentrations of ∑PFAS under 1 ng g-1 in mulch and food waste and at 1380 ng g-1 in leachate from used compostable food contact materials. Concentrations of targeted ∑PFAS increased with compost maturity along the windrow (1.85-23.1 ng g-1) and in mature stockpiles of increasing curing age (12.6-84.3 ng g-1). Among 15 PFAS quantified in compost, short-chain perfluorocarboxylic acids (PFCAs) - C5 and C6 PFCAs in particular - led the increasing trend, suggesting biotransformation of precursor PFAS into these terminal PFAS through aerobic decomposition. Several precursor PFAS were also measured, including fluorotelomer carboxylic acids (FTCAs) and polyfluorinated phosphate diesters (PAPs). However, since most targeted analytical methods and proposed regulations prioritize terminal PFAS, testing fully matured compost would provide the most relevant snapshot of PFAS that could be land applied. In addition, removing co-disposed food contact materials from the FW feedstock onsite yielded only a 37 % reduction of PFAS loads in subsequent compost, likely due to PFAS leaching during co-disposal. Source-separation of food contact materials is currently the best management practice for meaningful reduction of PFAS in food waste composts intended for land application.


Assuntos
Compostagem , Fluorocarbonos , Eliminação de Resíduos , Poluentes Químicos da Água , 60659 , Alimentos , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Fluorocarbonos/análise , Fluorocarbonos/metabolismo
5.
J Environ Manage ; 357: 120700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565029

RESUMO

To protect human health, wildlife and the aquatic environment, "safe uses" of pesticides are determined at the EU level while product authorization and terms of use are established at the national level. In Sweden, extra precaution is taken to protect drinking water, and permits are therefore required for pesticide use within abstraction zones. This paper presents MACRO-DB, a tool for assessing pesticide contamination risks of groundwater and surface water, used by authorities to support their decision-making for issuing such permits. MACRO-DB is a meta-model based on 583,200 simulations of the physically-based MACRO model used for assessing pesticide leaching risks at EU and national level. MACRO-DB is simple to use and runs on widely available input data. In a qualitative comparative assessment for two counties in Sweden, MACRO-DB outputs were in general agreement with groundwater monitoring data and matched or were more protective than the national risk assessment procedure for groundwater.


Assuntos
Água Potável , Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/análise , Suécia , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco/métodos , Internet
6.
J Environ Manage ; 357: 120677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565033

RESUMO

Attention on the use of transboundary aquifers (TBAs) and their cross-border impacts is growing as countries become increasingly concerned about their long-term water security. Cross-border impacts, in groundwater quality and quantity, tend to concentrate in specific parts of TBAs, as they largely depend on the transboundary flow dynamics where anthropogenic actions operate. Thus, there is a growing consensus that strategies intended to prevent or mitigate such impacts should be implemented in strategic zones rather than in the whole TBA. These transboundary groundwater management zones (TGMZs) are relatively recent but have become a prominent topic in TBA management. However, until now, limited effort has been put into exploring the concept of TGMZs and the methods for their delineation. This research aims to fill these gaps and provide a basis for the delineation of TGMZs, thus helping neighbouring countries meet international responsibilities regarding the right to use and enjoy groundwater in TBAs. By reviewing academic and grey literature accessible from public sources, we present an overview of the concept and terminology of TGMZs, the approaches proposed for their delineation, and current operating examples. Additionally, we build a conceptual framework for assessing cross-border groundwater impacts by identifying their typologies and causal factors. We then apply our framework to evaluate and compare three reported methods which identify and delineate TGMZs from distinct perspectives, thereby gaining insights into their principles, performances, and limitations. Finally, we provide recommendations for further research towards optimising methods for delineating TGMZs.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Abastecimento de Água , Poluentes Químicos da Água/análise , Água , Monitoramento Ambiental/métodos
7.
J Chromatogr A ; 1721: 464854, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38579528

RESUMO

Developing adsorbents with high performance and long service life for effective extracting the trace organochlorine pesticides (OCPs) from real water is attracting numerous attentions. Herein, a self-standing covalent organic framework (COF-TpPa) membrane with fiber morphology was successfully synthesized by using electrospun nanofiber membranes as template and employed as solid-phase microextraction (SPME) coating for ultra-high sensitivity extraction and analysis of trace OCPs in water. The as-synthesized COF-TpPa membrane exhibited a high specific surface area (800.83 m2 g-1), stable nanofibrous structure, and excellent chemical and thermal stability. Based on the COF-TpPa membrane, a new SPME analytical method in conjunction with gas chromatography-mass spectrometry (GC-MS) was established. This proposed method possessed favorable linearity in concentration of 0.05-2000 ng L-1, high sensitivity with enrichment factors ranging from 2175 to 5846, low limits of detection (0.001-0.150 ng L-1), satisfactory precision (RSD < 10 %), and excellent repeatability (>150 cycles), which was better than most of the reported works. Additionally, the density functional theory (DFT) calculations and XPS results demonstrated that the outstanding enrichment performance of the COF-TpPa membrane was owing to synergistic effect of π-π stacking effects, high specific surface area and hydrogen bonding. This work will expect to extend the applications of COF membrane to captures trace organic pollutants in complex environmental water, as well as offer a multiscale interpretation for the design of effective adsorbents.


Assuntos
Hidrocarbonetos Clorados , Estruturas Metalorgânicas , Nanofibras , Praguicidas , Poluentes Químicos da Água , Água , Porosidade , Poluentes Químicos da Água/análise , Microextração em Fase Sólida/métodos , Praguicidas/análise , Hidrocarbonetos Clorados/análise
8.
J Environ Manage ; 357: 120814, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581896

RESUMO

Investigating the possible direction of a CO2-dissolved water plume migration near the potential CO2 leakage area is a significant task because it helps estimate the spatial and temporal monitoring scale to detect the signal of released CO2 from the storage. Accordingly, the Korea CO2 Storage Environmental Management (K-COSEM) research center tried to develop an intensive monitoring system and applied it to the artificial CO2 release test in the actual field. Monitoring data from the field tests depicted the horizontal movement of the CO2-dissolved water plume along the direction of the groundwater flow. However, it remains unclear how the CO2-dissolved water plume migrates vertically and how gas accumulation occurs near the capillary zone. The present study simulated the CO2 release test with a visual expression method utilizing a Hele-Shaw cell with hydraulic gradient conditions (i = 0, 0.1, and 0.01) and tried to estimate the significant influences on a diffusive-advective transport of the dissolved gas plume with the shallow aquifer condition. The visualization experiment results were intuitively verified to determine whether the theoretical principles of action related to plume flow applied in this context. The results suggest that a CO2-dissolved water plume is distributed by hydraulic gradients and density-driven CO2 convective flow. The plume shape, center, and area were analyzed using an image analyzer program; the results demonstrated that the plume characteristic evolved depending on the significant effects on the plume. When the plume was mainly affected by the hydraulic gradient, it rapidly moved from the injection point to the last boundary; in contrast, when it was influenced primarily by density-driven CO2 convective flow, it flowed diagonally downward in the shape of varied branches. The numerical model calculated the migration of the CO2-dissolved water plume affected by both factors. The laboratory experiment and numerical simulation results suggest that the migration of a CO2-dissolved water plume may be affected by the hydraulic gradient and density-driven CO2 convective transport. As such, these factors should be considered when designing and analyzing CO2 monitoring signals to detect CO2 leaks from shallow aquifer systems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Dióxido de Carbono , Água , Simulação por Computador , Poluentes Químicos da Água/análise
9.
J Environ Manage ; 357: 120786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583386

RESUMO

An innovative task was undertaken to convert ubiquitous and toxic electronic waste, waste toner powder (WTP), into novel adsorbents. Alkaline modification with KOH, NaOH, and NH4OH was employed for the first time to synthesize a series of surface-modified WTP with enhanced dispersibility and adsorption capacity. XRD, XRF, FTIR, and BET analyses confirmed that the prepared KOH-WTP, NaOH-WTP, and NH4OH-WTP were oxygen-functionalized self-doped iron oxide-graphite nanocomposites. The prepared adsorbents were used to remove methylene blue and tetracycline from aqueous solutions. KOH-WTP (0.1 g/100 mL) adsorbed 80% of 10 mg/L methylene blue within 1 h, while 0.1 g/100 mL NH4OH-WTP removed 72% of 10 mg/L tetracycline in 3 h. Exploring surface chemistry by altering solution pH and temperature suggested that hydrogen bonding, electrostatic interactions, π-π electron stacking, and pore filling were plausible adsorption mechanisms. Scanning electron microscopy revealed a diminishing adsorbents porosity after adsorption proving the filling of pores by the adsorbates. KOH-WTP and NH4OH-WTP removed 77% and 61% of methylene blue and tetracycline respectively in the fourth reuse. The adsorption data of methylene blue and tetracycline fitted the Freundlich isotherm model. The maximum adsorption capacities of KOH-WTP and NH4OH-WTP for methylene blue and tetracycline were 59 mg/g and 43 mg/g respectively. The prepared adsorbents were also compared with other adsorbents to assess their performance. The transformation of waste toner powder into magnetically separable oxygen-functionalized WTP with outstanding recyclability and adsorption capacity showcases a significant advancement in sustainable wastewater treatment. This further aligns with the principles of the circular economy through the utilization of toxic e-waste in value-added applications. Additionally, magnetic separation of surface-modified WTP post-treatment can curtail filtration and centrifugation expenses and adsorbent loss during wastewater treatment.


Assuntos
Compostos Férricos , Grafite , Nanocompostos , Poluentes Químicos da Água , Azul de Metileno , Adsorção , Pós , Hidróxido de Sódio , Tetraciclina , Antibacterianos , Oxigênio , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
11.
Wei Sheng Yan Jiu ; 53(2): 316-331, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604970

RESUMO

OBJECTIVE: To establishe an analysis and identification method for 2-methylisoborneol(2-MIB) and geosmin(GSM) in water using purge and trap-gas chromatography-mass spectrometry. METHODS: The samples were enriched and analyzed using a purge and trap system, followed by the separation on a DB-624(30 m×0.25 mm, 1.4 µm) chromatographic column. Quantification was performed using gas chromatography-mass spectrometry with the selected ion monitoring and internal standard calibration. RESULTS: The calibration curves for 2-MIB and GSM showed an excellent linearity in the range of 1 to 100 ng/L with R~2 values greater than 0.999. The detection limit and quantification limit for both 2-MIB and GSM were 0.33 ng/L and 1.0 ng/L, respectively. Spike recovery experiments were further carried on the source water and drinking water at three concentration levels. It showed that the average recoveries were from 82.0% to 111.0% for 2-MIB while 84.0% to 110% for GSM. Additionally, the test precision of 2-MIB and GSM ranged from 1.9% to 7.3% and 1.9% to 5.0%(n=6), respectively. The analysis of multiple samples including the local source water, treated water and distribution network water confirmed the existence of 2-MIB and GSM. CONCLUSION: Compared to the national standard(GB/T 5750.8-2023), the proposed method enables fully automated sample introduction and analysis without the extra pre-treatment. It provides the advantages of simplicity, good repeatability and high accuracy.


Assuntos
Água Potável , Naftóis , Poluentes Químicos da Água , Água/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Água Potável/análise , Canfanos/análise , Poluentes Químicos da Água/análise , Odorantes/análise
12.
Water Environ Res ; 96(4): e11021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605502

RESUMO

Anthropogenic particles (AP), which include microplastics and other synthetic, semisynthetic, and anthropogenically modified materials, are pollutants of concern in aquatic ecosystems worldwide. Rivers are important conduits and retention sites for AP, and time series data on the movement of these particles in lotic ecosystems are needed to assess the role of rivers in the global AP cycle. Much research assessing AP pollution extrapolates stream loads based on single time point measurements, but lotic ecosystems are highly variable over time (e.g., seasonality and storm events). The accuracy of models describing AP dynamics in rivers is constrained by the limited studies that examine how frequent changes in discharge drive particle retention and transport. This study addressed this knowledge gap by using automated, high-resolution sampling to track AP concentrations and fluxes during multiple storm events in an urban river (Milwaukee River) and comparing these measurements to commonly monitored water quality metrics. AP concentrations and fluxes varied significantly across four storm events, highlighting the temporal variability of AP dynamics. When data from the sampling periods were pooled, there were increases in particle concentration and flux during the early phases of the storms, suggesting that floods may flush AP into the river and/or resuspend particles from the benthic zone. AP flux was closely linked to river discharge, suggesting large loads of AP are delivered downstream during storms. Unexpectedly, AP concentrations were not correlated with other simultaneously measured water quality metrics, including total suspended solids, fecal coliforms, chloride, nitrate, and sulfate, indicating that these metrics cannot be used to estimate AP. These data will contribute to more accurate models of particle dynamics in rivers and global plastic export to oceans. PRACTITIONER POINTS: Anthropogenic particle (AP) concentrations and fluxes in an urban river varied across four storm events. AP concentrations and fluxes were the highest during the early phases of the storms. Storms increased AP transport downstream compared with baseflow. AP concentrations did not correlate with other water quality metrics during storms.


Assuntos
Ecossistema , Poluentes Químicos da Água , Plásticos , Qualidade da Água , Rios , Fezes , Monitoramento Ambiental , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 926: 172067, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38565352

RESUMO

Diffusive gradients in thin films (DGTs) have been well-documented for the measurement of a broad range of organic pollutants in surface water. However, the performance has been challenged by the inherent periodic concentration fluctuations for most organic pollutants. Therefore, there is an urgent need to assess the true time-weighted average (TWA) concentration based on fluctuating concentration profiles. The study aimed to evaluate the responsiveness of DGT and accuracy of TWA concentrations, considering various concentration fluctuating scenarios of 20 pharmaceuticals in surface water. The reliability and accuracy of the TWA concentrations measured by the DGT were assessed by comparison with the sum of cumulative mass of DGT exposed at different stages over the deployment period. The results showed that peak concentration duration (1-5 days), peak concentration fluctuation intensity (6-20 times), and occurrence time of peak concentration fluctuation (early, middle, and late stages) have minimal effect on DGT's response to most target pharmaceutical concentration fluctuations (0.8 < CDGT/CTWA < 1.2). While the downward-bent accumulations of a few pharmaceuticals on DGT occur as the sampling time increases, which could be accounted for by capacity effects during a long-time sampling period. Additionally, the DGT device had good sampling performance in recording short fluctuating concentrations from a pulse event returning to background concentrations with variable intensity and duration. This study revealed a satisfactory capacity for the evaluation of the TWA concentration of pharmaceuticals integrated over the period of different pulse deployment for DGT, suggesting that this passive sampler is ideally suited as a monitoring tool for field application. This study represents the first trial for evaluating DGT sampling performance for pharmaceuticals with multiple concentration fluctuating scenarios over time, which would be valuable for assessing the pollution status in future monitoring campaign.


Assuntos
Poluentes Químicos da Água , Água , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Difusão , Preparações Farmacêuticas
14.
Environ Sci Technol ; 58(15): 6825-6834, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567993

RESUMO

Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 µg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 µg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.


Assuntos
Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Água do Mar/análise , Água do Mar/química , Isótopos/análise , Poluentes Químicos da Água/análise
15.
Environ Sci Technol ; 58(15): 6616-6627, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569050

RESUMO

While the extent of environmental contamination by per- and polyfluoroalkyl substances (PFAS) has mobilized considerable efforts around the globe in recent years, publicly available data on PFAS in Europe were very limited. In an unprecedented experiment of "expert-reviewed journalism" involving 29 journalists and seven scientific advisers, a cross-border collaborative project, the "Forever Pollution Project" (FPP), drew on both scientific methods and investigative journalism techniques such as open-source intelligence (OSINT) and freedom of information (FOI) requests to map contamination across Europe, making public data that previously had existed as "unseen science". The FPP identified 22,934 known contamination sites, including 20 PFAS manufacturing facilities, and 21,426 "presumptive contamination sites", including 13,745 sites presumably contaminated with fluorinated aqueous film-forming foam (AFFF) discharge, 2911 industrial facilities, and 4752 sites related to PFAS-containing waste. Additionally, the FPP identified 231 "known PFAS users", a new category for sites with an intermediate level of evidence of PFAS use and considered likely to be contamination sources. However, the true extent of contamination in Europe remains significantly underestimated due to a lack of comprehensive geolocation, sampling, and publicly available data. This model of knowledge production and dissemination offers lessons for researchers, policymakers, and journalists about cross-field collaborations and data transparency.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Poluição Ambiental , Europa (Continente) , Comércio
16.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577774

RESUMO

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Assuntos
Polietileno , Poluentes Químicos da Água , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos , Silicones
17.
Environ Sci Technol ; 58(15): 6814-6824, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38581381

RESUMO

Identifying persistent, mobile, and toxic (PMT) substances from synthetic chemicals is critical for chemical management and ecological risk assessment. Inspired by the triazine analogues (e.g., atrazine and melamine) in the original European Union's list of PMT substances, the occurrence and compositions of alkylamine triazines (AATs) in the estuarine sediments of main rivers along the eastern coast of China were comprehensively explored by an integrated strategy of target, suspect, and nontarget screening analysis. A total of 44 AATs were identified, of which 23 were confirmed by comparison with authentic standards. Among the remaining tentatively identified analogues, 18 were emerging pollutants not previously reported in the environment. Tri- and di-AATs were the dominant analogues, and varied geographic distributions of AATs were apparent in the investigated regions. Toxic unit calculations indicated that there were acute and chronic risks to algae from AATs on a large geographical scale, with the antifouling biocide cybutryne as a key driver. The assessment of physicochemical properties further revealed that more than half of the AATs could be categorized as potential PMT and very persistent and very mobile substances at the screening level. These results highlight that AATs are a class of PMT substances posing high ecological impacts on the aquatic environment and therefore require more attention.


Assuntos
Atrazina , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Rios/química , Triazinas/análise , Atrazina/análise , China , Monitoramento Ambiental
18.
Water Sci Technol ; 89(7): 1771-1786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619902

RESUMO

The effluent of WWTPs is an important source of microplastics (MP) for the aquatic environment. In this review study, MPs in wastewater treatment plants (WWTP) in Türkiye and their removal from WWTPs are reviewed for the first time. First, MP characteristics in the influent and effluent of WWTPs in Türkiye are discussed. In the next section, the abundance of MPs in the influent and effluent of WWTPs in Türkiye and the MP removal efficiency of WWTPs in Türkiye are evaluated. Then, the results of studies on MP abundance and characteristics in Türkiye's aquatic environments are presented and suggestions are made to reduce MPs released from WWTPs into the receiving environments. Strategies for reducing MPs released to the receiving environment from WWTPs of Türkiye are summarized. In the last section, research gaps regarding MPs in WWTPs in Türkiye are identified and suggestions are made for future studies. This review paper provides a comprehensive assessment of the abundance, dominant characteristics, and removal of MPs in WWTPs in Türkiye, as well as the current status and deficiencies in Türkiye. Therefore, this review can serve as a scientific guide to improve the MP removal efficiency of WWTPs in Türkiye.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , Águas Residuárias , Eliminação de Resíduos Líquidos , Turquia , Poluentes Químicos da Água/análise , Monitoramento Ambiental
19.
Environ Monit Assess ; 196(5): 454, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622372

RESUMO

This work presents a sensitive and accurate analytical method for the determination of phenytoin at trace levels in domestic wastewater and synthetic urine samples by gas chromatography-mass spectrometry (GC-MS) after the metal sieve-linked double syringe liquid-phase microextraction (MSLDS-LPME) method. A metal sieve was produced in our laboratory in order to disperse water-immiscible extraction solvents into aqueous media. Univariate optimization studies for the selection of proper extraction solvent, extraction solvent volume, mixing cycle, and initial sample volume were carried out. Under the optimum MSLDS-LPME conditions, mass-based dynamic range, limit of quantitation (LOQ), limit of detection (LOD), and percent relative standard deviation (%RSD) for the lowest concentration in calibration plot were figured out to be 100.5-10964.2 µg kg-1, 150.6 µg kg-1, 45.2 µg kg-1, and 9.4%, respectively. Detection power was improved as 187.7-folds by the developed MSLDS-LPME-GC-MS system while enhancement in calibration sensitivity was recorded as 188.0-folds. In the final step of this study, the accuracy and applicability of the proposed system were tested by matrix matching calibration strategy. Percent recovery results for domestic wastewater and synthetic urine samples were calculated as 95.6-110.3% and 91.7-106.6%, respectively. These results proved the accuracy and applicability of the proposed preconcentration method, and the obtained analytical results showed the efficiency of the lab-made metal sieve apparatus.


Assuntos
Microextração em Fase Líquida , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas/métodos , Águas Residuárias , Fenitoína/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Solventes/química , Água/análise , Microextração em Fase Líquida/métodos , Limite de Detecção
20.
Environ Pollut ; 348: 123906, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561036

RESUMO

Recently, there has been an increasing emphasis on examining the ecotoxicological effects of anthropogenic microparticles (MPs), especially microplastic particles, and related issues. Nevertheless, a notable deficiency exists in our understanding of the consequences on marine organisms, specifically in relation to microfibers and the combined influence of MPs and temperature. In this investigation, mysid shrimp (Americamysis bahia), an important species and prey item in estuarine and marine food webs, were subjected to four separate experimental trials involving fibers (cotton, nylon, polyester, hemp; 3 particles/ml; approximately 200 µm in length) or fragments (low-density Polyethylene: LDPE, polylactic acid: PLA, and their leachates; 5, 50, 200, 500 particles/ml; 1-20 µm). To consider the effects in the context of climate change, three different temperatures (22, 25, and 28 °C) were examined. Organismal growth and swimming behavior were measured following exposure to fragments and microfibers, and reactive oxygen species and particle uptake were investigated after microfiber exposure. To simulate the physical characteristics of MP exposure, such as microfibers obstructing the gills, we also assessed the post-fiber-exposure swimming behavior in an oxygen-depleted environment. Data revealed negligible fragment, but fiber exposure effects on growth. PLA leachate triggered higher activity at 25 °C and 28 °C; LDPE exposures led to decreased activity at 28 °C. Cotton exposures led to fewer behavioral differences compared to controls than other fiber types. The exposure to hemp fibers resulted in significant ROS increases at 28 °C. Microfibers were predominantly located within the gastric and upper gastrointestinal tract, suggesting extended periods of residence and the potential for obstructive phenomena over the longer term. The combination of increasing water temperatures, microplastic influx, and oxidative stress has the potential to pose risks to all components of marine and aquatic food webs.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Microplásticos , Temperatura , Água , Polietileno , Brasil , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Crustáceos , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA